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slowly when confronted by the large representations necessary for low-level

vision., Application of muligrid methods can overcome this drawback, as we establish
» in previous work on 3-D surface reconstruction. In this paper, we develope
! efficient multiresolution iterative algoithms for computing lightness, shape-
from-shading, and cptical flow, and we evaluate the performance of these algorithms
on synthetic images. The multigrid methodology that we describe is broadly
applicable in low-level vision. Notably, it is an appealing stategy to use in
conjuntion with regularization analysis for the efficient solution of a
wide range of ill-posed visual reconstruction problems.
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Abstract

Image anmatysis problems, posed mathematically as variatic wal principles or as partial differential
cguations, are amenabic o numgerical solution by relaxation atgorithms that are local, iterative,
and otten paraliel Althouph they are well suited structurally for implementation on massively
parallel, lecally-intercennedted computational architectures, such distributed algorithins arc seriously
handic: apred by an iherent incfficioney 4t propapating constraints between Nidely separated
pnmux ng clements.  Hence, they converge extremely slowly when cenfionied Ly the large

represeniations necessary for low-level vision,  Application of multigiid mcihods can overcome
tes drasback, as we established s presious work on 3-1 surface reconstiuction. T this paper, we
deselop efticient maltresolution terative algorithms for computing lightness, shape-from-shading,
and ontical flov, and woe evatnate (e performance of these algorithms on syathetic images, The
muiteiid metha ooy tat ve desenbe s broadly applicable in low-level vision. Notably, it is an
appcs «ln-[ strategy to v an comjunction with regularization analysis for the \.ﬂlCILll[ solution of a
widde range of tll-posed viseen reconstiuction problems, - o
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1. Introduction

Varietional principles and partial ditterential equations have played a sighificant role in
the mathemauca! formulation of low-level visuael information processing problems (represcntative
cxamples include [Horn, 1974, 1975; Ullman, 1979; Horn & Schunck, 1981; lkeuchi & llorn;
1981; Narayanan er i, 1982, Baesy & Broit, 1982 Hummel & Zucker. 1983; Grimson, 1983;
Terzopoulos, 1982, 1983: Nagel, 1983, Hhldreth, 1934; Brady & Yuille, 1999)). An attractive feat -
of vartatic nal and differentia! formulations (ence discretized) is the possibility of computing L 2
desired schntions by a popular class of numerical relaxation algorithms, These iterative algorithme
require oaly local computations which can usually be performed in parallel by many locally

communicating precessors distnbaed in computational networks or grids,

Lol paratlel algaridims are appealing in the context of low-ievel vision [Rosenfeld et
aLo 19760 Ullman, 1979; Baltard e o, 1983] At a ceitain level of abstraction they do not
appear incompatibic with the appare.s structure of advanced hrwological vision systems. Moreaover,
they are 1caily sutted o implenicutation on massively patallel computers with numerous stimple,
locally mytercenncected processing clements. Such potentally powerful architectures will certainly

profiscrate, pending invounent advances in VEST technology [Batcher, 1980; Hillis, 1981).

The desired sclutions o many visual nroblems appear to possess certain global properties
{consistenay, smoathness mianimal energy. ete). which are expressed formally by the vanational
principie or associated parual differential equation formulations.! Given only local commuuication
capabilities among processing clements, however, global properties can only be satisfied indirectly,
tpically by iteratively propagating visual constraints across the grid network. Indircct propagation
can result in substantial computatonal incfficicncy, since the computational grids necessary for low-
lesel vision applications tend to be extremely laige. Convergence of the iterative process is ofien
sostow as e nearly peutralize e computational power offered by massive paraliclism.  Indeed,
for dine discretizavens on lage zrnidss excruciatingly slow convergence rates have been obscrved in
ierative algonthims fur computing fightness [Blake, 1984, sec also Horn, 1974), shapc-from-shading
Hacuchn & Horn, 19810 Smith 1982, epuical flow [ITorn & Schunck, 19817 Nagel, 1983). 3-D

surfaces [Orinison, 1983 Lerzopoules, 1982, 1983) and other visual reconsiraction problems,

Sinc: spatial tecabty of computation is dependent on spatta! resolution, local (e.g., nearest
ncizhbor) computations on a coarse grid over o ghven region are analogous to more global
cemputations on a fine grid over the same region. This suggests the possibility of counteracting
tie stugginhness of global interactions by depieying local iterative processes over a multiresolution
Micrarchy of arids, Thisas the basis of mudtigend relaxaiion methods which are gaining populanity
m apphed numencal analssis [Hockbush & TProttenberp, 1952) The computationai structure of
k \|r~|l-mn 1_1_;1;‘.—(1”d||2’crcnlml formuiabois ¢an be related through the Euler-Lagrange equaticns of the caleulus
of vacaion s, gven appiopiale contimialy and synunetry (or self adjointeess) conditions [Courant & Hilhert,
1953).
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multigrid methods bears an anteresting analogy to the multiresolution nature of spatial frequency
channels i the human catly visual system [Braddick. er ol 1978]. The mcthods are also related
to certain multiresolution 1image processing structures hat huve been proposed, notably pyramids
[Rosenfeld, 1984).

In ecarlicr work, we developed an efficient surface reconstructon algerithm based on multignid
relaxation methods {Terzepoulos, 1982, 1933] and we sugeested. as has Glazer [1984). that muldgnid
mcthods are broadly apnlicablc i low-ieve! computer visien. After a brief overview of multigria
methodology. we apply 1t 1o three other viston problams: the well-known problems of computng
lightness, shape-from-shading. and optical low from images. We develop novel multiresolution
algenthms for cach problem. Ou, cmpirical results indicate that these algorithims offer order-of-

magnitude gains in efficiency over their conmventional single level counterparts.

2. Multigrid Methodology

Pionceting imvestigations into multigrid methodology include the work of [Fedorenko, 1961),
[Bakhvaloy, 1966), {Brandt, 1773, 1977), and [Nicolades, 1977). 1t has beein applied to any
boundary value preblems (see [Brand, 1982 for an extensive bibliography ) and ihere has also been

some development in the cantext ol vanational prablams [Nicolmdes, 1977; Brandt, 1980).
2.1, Multigrid Rclaxation Methods

Multigrid relaxation incthods take advantage of muiiple discredizations of a continuous
problem over a range of resolution levels. The comser levels trade off spatial resolution for
direct communication paths over larger distances. Hence, ey efectively accelerate the global

propagation of inforniatien w amplity the overall efficiency of the iterative iclaxation process.

The inherent comnutational sluggishness of local iterative algorithinis can be studied from a
spatial frequency perspeciive. A local Fourier analysis of the error function (or, more conveniently,
the dvnamic residual functen froni cie iteratieon to the neat <hows that high-frequency comipanents
of the error — those coriponents with wavelengihs on the order of the grid spacing — are short-
lived, whereas low-frequency components peisist through many iterations {Brandu 1977). tHence,
comimaon (Ly or 1., ) ¢itor norms aocrease sharply during the first fow iterations, so long as there are
high-frequeiicy components to be anmhilated, but soon degencerate o 4 siow, asymptouc diminution
when only low-freguency components remain (see Fig. 1), 1his suggests that while relaxation is
melhcient ot completely anminlaang the crror function, it can be vers clicient at sinoothing it
irom this pomt of view, shie ond tecarchy enables the eicient sioaihiy, proiecities of relaxation

to be exploted over a wide range of spatal frequencices.

Empinical studics of medel prebiems (Poisson’s equaticn ina rectangle) indicate that multigrid

methods can converge mny osseintially order O(V) numbcer o eperations, whicie & s the number of
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Figure 1. Asvmplotic error reduction by pe axation. The mean square (dytamic residual) error is plotted
as @ fungton of the dlerauon number ;o sequence of (Gauss~Seidel) relaxation iterations of 3 surtice
recanstruciion algorthn e curve aaxdubis 2ty pical behavior of lead itertive methods: Convergence is
rapid dering the finst few nerauons, bat quickly degenciates o slow asyiptotic error reduction.

nedes m o the grid [Branda 19770 Tiis can be compaired to typical complexitics of O(N'?) operations
for the solutton of madel problems by standard (single level) relaxation. As a conseguence,
mulignd methods potentally offer dramatic increases in efficiency over standard relaxation methods
in low-lovel vision applicetions, since N tends o be very large (order 10f to 108, or more). For
comparative complexity analyses, the total computational expense of mulugrd methods may be
meastred in convenient machine independent units, The basic work wnir is defined as the amount

of computation requited to perform one itcration on the finest grid in the hicrarchy.

Our adeptetton of mulugnd mctheds o visual processing has a number of features: (i)
meltiple visual reprosentstions conering g range of spatial resolutions, (i) local, iterative relaxation
processes hat propagite censtrants within cach representational level, (i) focal coarse-to-fine
srofengation processes that allow coarser representations Lo constrain finer ones, (iv) finc-to-coarse
restricien precesses that altow finer representations w constrain and nnprove the eccuracy of coarser
ones, and (iv) Gecunsine) coondination schemes that enable the hictarchy of representations and

COTMPOICNL Processes L Cooporate bowards mcreasing efliciency.,

In mntogrid mctheds, e mtalevet processes usually are basic relaxation methods such as
Gauss-Sc:del or Jacobi iclaxation, the prolongation processes are local Lagrange (polynomial)
ideipotatons, and e reirction processes are Jocal averaging opetations, “Fhe exact form of these

eperaticns s prablen donendent.
!

2.2. Discretization

Appropiate relation processes can be derised by local discretization of the continuous

ctaala s a'l"a .t Cele e e A '
A e s o el e 2 a” Dl S -

L UL SIS YV I S GNP S G T G N I

>




11'RZ0POLT OS MUT HGRID REFEVANATION MEEHODS

problems.  The finwe element niethod [Strang & bFix, 1973] o gencral and powertul local
discretizaiion techniaue, can be applied direetly to vartational principle fonnulations of visual
preblems [Terzopoulos, 1982) When the visual probiem is posed as a partial differential equation,

Jucat discretization may be carried out using the fiuite difference metiiod [IForsythe & Wasow, 1960].

The basic idea behind the fnite element method is that a global approximation can result from
interactions among inaiy ety siiopic locar approximiations. This s aecomphished by tessellating
the continuous doman into o large number of smuall subdomains o elenents £ whose dimensions
depend on o fundaicnial size A The approximation within elements depends on a small number of
parameters — the values of the solution. and/or some et its derivanses, at a set of nodes associated
with cach clement. ‘The power of the method stems from the fact the local approximations can be
based on low-order polynomials. This makes it relatively easy to express the continuous functional
as a discrete summation over all the element cortributions. If the varational principle is quadratic,
the resulting discrete problem takes the form of a larpe system of lincar cquations A"ub = f*,
where u? gy the sector of nodal variables, The inite element methnd can also be characterized as a
systematic piveedure for generating finite element approximating spaces whose iocal-support basis

functions make A" sparse (e, most of its clements are zero).

The finite difference mcihiod a5 applied differently. Tipically a gnid of nodes with spacings
proportonal o a parameter A ois set up over the domain, The duterential operatar is then replaced
by finite ditterence equations insolving nodal variables at neighboring nwdes. ‘The collection
of linite difference cquations defines a disciete system which approximates the given differential
cquation. 1f the ditferential operator 1 linear (as ¢ the Euler-Tagrange equations of quadratic
variational principles) and a lincar finite difference approximation is employed, the discrete system
is again a lincar system APuh = 0 Although the total number of nodes Vs generally large, cach
finite diflcrence equation involves only a few nodal variables. Thieietore, the hinear systein 1S again

sparse.

While the finite difference miethod is generally caster to apply, the fimit eleriant method offers
a inuch sounder convergence theory, as well as a flexibility that allows the spattally nonuniform
diseretication of donians huving complicated shapes. Nonetheiess, both discicuzation techniques
yicld large, spanc systems of dinear cquations ina wide range of sisual applications. A great deal
of cillort iy numies el anralvsas has been directed o the solution of such systems, which wirn out to
be especiatly wedl suied for sanation by local, paiclicl, terative methiods, pacticularly the relaxation

micthiods that we hove heen discusang,
2.3. Multigrid Structure and Coordination

Our spauaily viitform discretizations of the contuinons visudd problems o this paper will
vicld uniform gnds ot each fevel of dic wulugrid hericlny. Appheaton of mulugnd methods

can be simphbied substanually pover a 201 decrease i pind exsolution Som any level o the next

TR



THFRZOPOLT OS MU HTGRID REFANATTON ML TTHODS

S | fine

-
N

medium

—

aizamzation ol e ttresolation weorithm. A small pordon of three levels of the 2:1
S OnT neaatnaghbor mreprocessor coniections are incuded.
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coarser fevel Fortimaw Iy, dhas icsoliition ratio appears to be near optimal with regard o multigrid
comatgence rates [Bradt, 19771 Page 2 illustraios a peraon of three grids of a 2:1 multigrid
nicrarchy, Ina senel impiementiton the central processor operates at cach grid node sequentially,
wherens i fully pardict wenlementaton, ¢ach noede reprosents a separate processing clemcnt

within o distiibuted lecalmicrconnect aidinteciure (see Fig. 2\

The multireselusen vinue! sivedituns o e dosenbed utilize simple injection 4., for
the finewc-coarse revicions, hivipear oterpolation §_y o, for the coarse-to-fine prolongation,
and an qespgive multignd coordinatton schieme which was emploved successfully in our surface
reconstiuc ion alzortnn («co Flerzopoutos, 19820 1983) for details). The general coordimation
< me firdt performs asutlizient namber of relavation iterations to solve the coarsest tevel discrete
Sysct APt - oo desred accuracy (procedure SOLVE). and then proceeds o the finest level
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procedure FMG
uh — SOLVE (1, uh, ) -
for [« 2 to L do R
begin
e Tt
MG (I, vM, ™)
end;

applying the multigrid algonthm

procedure MG ({, u, g)
if {1 then ue- SOLVE (1, u, g)
else

begin
for i+~ 1 to n, [while ...] do u«- RELAX (I, u, g):
LD FEYINE |
de AMov e T (g - AN
for i+-1 to ny [while ...] do MG {I-1, v, d);
ue-u+ Ioa(v— Tisu);
for 1 — 1 to n; do [while

end;

...] u+— RELAX (lv u, g)

After ny relaxaion iterations {procedure RELAX) have been perforimed at level {, MG performs a
restriction 1o die nexi coarser level ¢ = 1. Tt then calls itself recursively on the coarser level ng
times. anally, it perfemss a proiongation from the coarser level back to levei ¢, following up with
ny more iterations or level Lo The equations on the coarsest level £ == 1 may be solved to desired
accuracy with sutficiently niany iterations (procedure SOLVE). One can ieadily show that when MG \
is invoked on ievel A i cans RCLAX & ol i n* 7w & ny) times on level £ 7# 1 and it calls
SOLVE np*~" times ou devel 1. In gencral, most of the relaxation iterations are performed on the

coarser levels {Heamker, 1980}

Tie optional [while ...] clauses denote conditions that may be checked during the
computation and used 1o terminate some iterations.  Dynamic consittions, ) pivaity o Cigems
pates measured by crror nonms, aie mcorporated imto adaptive coordination schemes, whereas Sixed
schemes arce controlled only by the constants ny, ng, and ny [Brandu 1977). Although adaptive
schemes tend o be more efticient in practice. fixed schemes lend themiselves better to theortical
analysis and, morcover, they di¢ casier o implement on distnibuted local-intereonnect architectures

duc, m part, to the absence of ervor norms which require global computations.

3. The Lightness Problem

The lightness of a4 suttace s the pereeptual correlate of 1is reflectance. Trrediance at a point

in the image s proportionadl o the product of the dluminance and refieciance at the corresponding
point on the surface. The hghtness prohlem is to cempute hghiness from image nradiance, without

any precise knowledge of cither reflectance or ilfuminance.



AR S e S L I B BRI AL e dde e Ak U0 BEL NS o ot R R A N
.o A B . - B

\ . AT

WARRE e T T

TERZOPOLIOS MUTTIGRID RE AX:\‘I:K)N MifTHoODLS

3.1, Analysis

The retinex theory of lightness and color proposed by Land and McCann [1971] is based on the
observation that itlaminance and reflectance patterns diifer in their spatial properties. Muminance
changes are wually gradual and. therefore, typically give rise to smooth ilumination gradients,
while reflectance changes tend to be shamp, since they often originate from abrupt pigmentation
changes” and surface occlusions. Horn [1974] proposed a two-difnensional gencralization of the
Land-McCann algerithm for computing lightness in Mondrian scencs., consisting of planar arcas
divided into subregions of uniform matte reflectance.

Let (s, v} be the reflectance of the surface at a point corresponding to the image point (z,%)
and lct S, y) be the illuminance at that point. The irradiance at the image point is given by
(i, y) = S(e,y) X I(x, »). Denoting e logarithins of the above functions as lowercase quantitics,
we have «{x, y) = o(x,y) + r(«,y). Applying the Laplacian operator A gives d(z, y) = Ae(z,y) =
Az, y)+ Ar(r, y). Ina Mondrian, illuminance is assumed to vary smoothly so that As(z, y) is finite
everywhery, while Ar(xr, ¥} exhibits pulse doublets at intensity cdges separating neighboring regions.
A thresholding operator 7 can be applied to .discard the illuminance component: T'[d(x, y)} ==
Ar{z,y) 7 f{z,n). Hence, the reflectance fe is given by the inverse logarithm of the solution to
Poisson's cquation

s P A?’(.’lt, !/) == f(rx y)! in Q,
where (1 is the plinar region covered by the image.

Horn solved the above partial differential equation by convolution with the appropriate
Green's function.  We instead pursue a local, iterative solution based on the finite difference
method.  Suppose that {1 is covered by a uniform squarc grid with spacing A, We can
approximate Ar == r,, 1 ryy using the order h? approximations rog == (rtfy, ; — 2rh; 4 1y )/h?
and vy, o= (r2 o, vk ert s )7k 10 obtain a standard discrete version of Poisson’s cquation
(thyyjboiy ok vl g - dek ) /h® == 5 This denotes a system of linear equations with
sparse coctlicient muitrix,

Rearranging. the Jacobi relaxation step is given by

{ *
RERPIR P "2’7".5)’

wherethe racketed superseripts denote the iteration ‘index. Jacobi refaxation is suited to parallel

h (nad) l ) (n) h
. 0 = n‘,u I

P
L

synchronot s hardware, whercas the Gauss-Seidel relaxation step given by

» v,
vt

(L

o (n+1) ](r" A A n) | ph (n<+|)_,'2[?'j)
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is more sui:able on a serial computer and, moreover, requires less storage.
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- Figure 3. Svuthesized Mondran images, These images, input to the alporithm, contain patches of uniform
g reflectance and a fett-to-nght iiminoiton ecdient. The three smaller images are increasingly coarser saumpled
4 versions of the Targest imipe which is 129 =2 129 pixeds, quantized to 256 ireadiance levels,

) We note in passing that Poisson’s cquation Ar == f is the Euler-lagrange equation for the

variational principle associated with a membrane problem. The solution can be characterized as
the deflection v(r, y) -= r(r,y) of & membrane subject to a load f{r, #). and it minimizes the
potential energy functional £(v) == [ fo 30l 4 02) = fodedy [Courant & Hilbert, 1953). Blake
[1984] olfers an alternative variational principle for lightness.  Posing oo ohiness problem as
a variational principle permits the direct application of the fiante elemeni discectization imethod,

which for instance does not require a uniform discretization of (2,

3.2. Resulls

A four Tevel satureselution lightness algorithm (with grid sizes 129 129, 65 X 65, 33X 33, and
17 > 17) was tosted on a synthesized Mendrian scene consisting of patches of uniform reflectance,
subjected to an illumination which increases quadratically from lelt to right, The original image,
: which is 129 ;< 124 pixels in sive, and three coarser-sampled verstons are shown in Fig, 3. All
images arc quantized o 256 irradiance levels, The grid function £ . <hown in Fig. 4, was
computed by maintaining only the peaks in the Laplacian of rf"J. Zero boundary conditions were
provided around the edges of the images, and the computation was started from (he zero initial

approxmation ' - 0. X
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Figure 5. The reeonsnucted Mondnan, this is the solmion computed after 33.97 work units by the four-level
lightness algersthm. ’\lml ol the ||Iu|m|‘ wion grachent m Fig. 3 has been xlmnmalcd

The relationship between the surtace onientation at a point (z,y) and the image irradiance there
I(z,y) is denoted by B(p, g). where p = u, and ¢ =, are the first partial derivatives of the surface
function at (z,y) ‘The shape-from-shading prohlem can be posed as a nonlinear, first-order partial
differendal equation in two unknowns, called the image-irradiance cquation: £(c, y) — R(p,¢) = 0
fHorn, 1975]. Surface orientation cannot be computed strictly locally hocause image irradiance
provides a single measurement, while surtace onientaion has tao independent components, The

image irradiance cyuation provides only one explicit constraint on surface cicntation,

Tkeuchi and Horn [1981) proposed an additional surface smooibness constraint and the
use of surtace oscluding contours us boundary condions. Since the p-g paramnelerization of
surface orientation becomes unbounded at occluding contours, however, surface orientation was
reparameteiized i tams of the (bounded) stereographic mapping: f — 2ap, y = 2aq, where
a = (1= 10 p?g?).

These considerations are formalized by a variational principle involving the minimization of

//(/2 Hg(yt g )r’[(ly—f,—//l/ (£.u) - deif,9)i drdy.

the functional

The first integral incorporates the surface smeothness constraint, The sccond is o least-squares term

which coerees the svwation inte satisfying the image iradimee equation by teating the ¢quation as

10
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Figare 6. Lamberon oohere images. These synthetic images input to the algorithm show a Lambertian
sphore distanthy dameted from the viewing direction. The three smatler images ore increasingly coarser
sampled veistons o the Lapest image which is 129 0 124 pixels, quantized 1o 256 irradiance levels.

& penalty constraint werghted hy a-fuctor N:-Other variational-formulations for shape-from-shading
have heen sugpestald, e, [Brooks & Horn, 1984,

The Fuler 1 osiange equations are given by the system of coupled partial differential equations

AV x[""(;‘:vy) : ’((f,{))]lf{ = 0),
Ag = ME(r,y) - RS, 0)]lty = 0.

Discretizing e - conations onoa unitorm grid with spacing 2 using standard finite difference

approximatienscH the Jaenbi relaxation scheme

PENUINY . o (M) g )y
t ;‘ ./p‘(:'j:f Do )WIQ,,J "(’:‘-J , w‘.j )“lf;!":),
R R YT . gt DAYt .l
m R R NV AN (RPN T
gh P n h X - “ e ! ok h R h 17,
where &1 R U RIS KPS RO o ATPES ORI PR SISy A
are Yoced invero o o M and WM at node (4, 5) (a factor of 1/4 has been absorbed into ), Ry =

ORIAS. and B, Sl Onasequential computer, we prefer to use the analogous Gauss-Seidel
relaxation o o aintend alporithn, due o its oreater stability, faster convergence, and reduced
RIS regquiaronts Arptopriate boundary conditions can be specified at occluding contours in

the image.
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Figure 7. Surtace nonnals of the Lambertian sphere. The solution &t the four resolutions that were obtained

after 6.125 vork units are shown.

4.2. Rasulls

A four level shape-from-shading algoritm (with grid sizes 129 X 129, 65 » 65, 33 X 33, and
17 > 17) was tosted on a synthetically-gencrare d image of a Lambertian sphere distantly illuminated
from the viewing direction by i point source. The original image, which is 129 X 129 pixcls in size,
and thice coarser-sampled versions are shown in Fig, 6. All images are guantized to 256 irradiance
levels. Tor the Vannbertian surface. we employed the expression f2(f.g) == max{D), coss], where
cost = [I6([uf 4 gay) » (4~ [ - g%)1 - [E - GV P+ g4 fE %) and where f, and
g. are U light source direcnon compaonents (fkeuchi & Horn, 1981]. and analocous expressions
for its derivatives 1t and 12, The onentation of the surface was speaificd around the occluding
contour of the sphere, and by tcating the contour itself as a possthle orientatinn discontinuity, the
grid functions f and g were allowed to make discontinuous transivions across it. Computation was

started from the zero initial approximation f == g 0.

12
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Figurc 8. Sutface representinions of the Lambeitian sphere. The depth representations on the lell were
generated by a four-level sushwe reconstruction algonthm in 8.8 work units using the normal svectors in
Fig. 7 a crnientation constraints. On the nght. the onentation constraints are depicted as “needies™ on the
reconstiicted surlaces. Only the thice coansest levels are shown, since the finest resolution surface is 1o dense
1 render a i 3-D pempective plot

13
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The solution computed at the four levels after 6.125 work units are shown in Fig. 7. The
total number of iterations performed on cach level from coarsest to finest respectively is 32, 10, 4,
f and 4. In comparison, a single-level algorithm required close to 200 work units to obtain a solution
of the same accuracy at the finest level in isolation. As in the casc of the lightness problem, the
single-tevel algorithm requires at least as many iterations for convergence as there are nodes across
the surface, since information at a node propagates only to its nearest neighbors after cach iteration,
I Convergence is somewhat faster, however, because shading infonmation is available at every node
inside the occluding contour to constrain surface shape according to the image irradiance cquation.
In any case, the multilevel shape-from-shading algorithm is again much more efficient because it

enables information o propagate quickly at the coarser scales,

z To obtain a representation of the surface in depth, the surface normals in Fig. 7 were
introduced as orientation constraints to a four-level surface reconstruction algorithm with identical
grid sizcs [Terzopoulos, 1984a).  “The normal vectors were first transformed from the f-g
stercographic parameterization uscd in the shape-from-shading algorithm to the p—¢ gradient space
paramclerization used in the surfice reconstructicn algorithm using the formulas p = -4f/(f? +
g*—4) and g = —4g/(f* ~ g* — 1). Nodcs outside the occluding contour of the sphere were treated
as depth discontinuitics. Fig. 8 shows the surfaces gencrated by the algerithm at the three coarsest

resolutions. The reconstruction required an addidonal 8.8 work units,

sy

5. The Optica! Flow Probtlem

Optical flow is the distribution of apparent velocitics of irradiance patterns in the dynamic
image. The velocity ficld and its discontinuitics can be an important source of information about
E the configurations and motions of visible surfaces. The optical flow problem is to compute a

velocity field from a temporal series of images.

5.1. Analysis

Horn and Schunck [1981] suggested a technique for determining optical fow in the restricted
case where the observed velocity of image radiance patterns can be attributed directly to small
interframe motions of surfaces in the scene. Under livese circumstances, the change in image
irradiance at a peint (e, y) 0 the image plane at iime ¢ and the motien of the irradiance pattern
can be rclated by the flow equation Lyu+ B v - Iy == 0, where F(z,y,t) is the image irradiance,

and u = dz/dt and v ~= dy/dt are the optical flow component functions,

An additional constraint is needed to solve this lincar equation for the two unknowns u and v,
If opague objects underga ngid motion or deformation, most pemts hiee a velocity similar to that
of their neighbors, except where surfaces occlude one another. Observing that the velocity field
varies smoothly almost everywhere, optical flow can be determined by finding the flow functions

u(s,y) and v(r, y) which minimize the fuinctionai

14

- s oaT oA e ey e o alaTe o a.at.tataiald “ aoa- Acanaahanecataded




.
J

DA DORRESRG

) s o au g

RCINAD

TERZOPOULOS . MULTIGRID RELAXATION METHODS

E(u,v) = _02//“(113 -+ u;,) + (02 v vl)drdy + / /X;(I',',u + E v+ E¢)* drdy,

where a is a constant. The first term is the smoothness ¢constraint, while the second is a least-squares
penalty expression which coerces the tlow field into satisfying the flow cquation. Related vartational
fonnulations of the optical flow problem have been suggested (e.g.. [Nagel, 1983), (Cornclius and
Kanade, 1983)).

‘The Fuler-l.agrange equations for the functional £ are given by [Horn and Schunck, 1981]

Elu+ E,Ev = *Au— E.E,,
F.E,u~ I'}:v = a’av- E, B

Assuming a cubical network of nodes with spacing h, where 1, j, and & index nodes along the z, y,
and t axcs respectively, vee usce the foltowing finite difference formulas to discretize the differential
operators

. 1 .
i"‘z!-h.J.k = é‘( bk 1":‘~|,1.k)r
(r2

1k — h
[I‘vln,).k - é Ly Vk I’i.)—l,k)r
1

- th h N
ieiyn = ;,(’ Lrieer = EL ),
4, .
AMu = iz ('ﬁ;“-hj k) - u'h’ k)’

Ahv = (p\’ljkl |;k) *

where @(u ) o= d(ul 4wt v ul w2 ul, ) and

Bl e (VR YR L Y Y, ). Other approximations are possible, including
those suggested by Horn and Schunck which, however, require over four times the computation per
iteration to gain some inproved attenuation o! high frequency error. Given dynamic unages over
at least three frames, a ssmmetric contral difference formula (808 0 = F (B2, oy — ER, o))

would be preferable, provided it is stable.

Substituting the above approximations into the Huler-lagrange equations and solving for

ul, e and v yields the following Jacobi relaxation formulas

o (n) .
PR LY 0 i,k PRI
U -k u'J N 1) -_h-—w-‘]-[l,,“_]'k ,
I‘l.]i
(n+1) v ) (n)
h n+ tLho ) 48R e 1A n
gk PV, il
Hyjok
wh = (U )‘2 ("/" 1h )2 L a?and
th./l']k.--,,l,,‘ ! T,k 1h‘l«
A [ . VLi, 4 e : - . e -
A l/,,”‘,t ”-_U..,_u < b[xi ok P ' k- The natural boundary conditions of the zcro

normal derivative are appmprmlc on e boundaries of surtaces. They can be enforced by copying

values to boundary nodes from ncighboring irterior nodes.
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Figure 9. Lambertian sphere images. These synthetic images input to the algorithn: at four resotutions depict
a uniformly expanding Lamberuian sphere, distantly illuminated from the viewing direcuon. Frames for the
first time instant are shown to the left of flames for the sccond tme instant,

5.2. Resulits

A four level optical flow algorithm (with grid sizes 129 x 129, 65 x 65, 33 % 43, and 17 X 17)
was (csted on a syrtheucally-gencrated 1mmage of a Lambertian sphere distantly iluminated from
the viewing direction by a point source. The sphere expanded unitormly over two frames. The
first frame, which is 129 X 129 pixcls in size, and three coarser-sampled versions are shown in the
left hall of Fig. 9. The next frume, in which the sphere has expanded is shown in the right half
of the figure. All images are quantized to 256 irradiance levels, The vdocity field was specified
around e occluding conteur of the sphere, and by trcating the contour as a pessible fow field
discontinuity, » and v were allowed to mak2 discontinuous tansitions acioss it. The computation

was started from the scro initial approximation w = ¢ — 0.

The soiution computed on the three coarsest levels after 4938 work units are showr: in Fig.

16
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Figure 10, Vclociny vectors for the cxpandimg Lamizeriian sphere. The solution at the three coarsest resolutions
Wit sere obtiened after 4935 work unss are shown (the finest-level solution is o dense 1o depict).

10 as velocity vectors in zy-spacc. The totai nur.ber of iterations pertormed on cach level from
coarsest o finest respectively is 40, 5,4, and 3 In comparison, a single-level aigonthm required
37 woik uhits o obtain a solutivn of the sane accuracy at the finest level in isolation, Again,

the mululovel algorithin is more cilicient becanse it propagates information quickly at the coarser

scales, Glizar [1984] also reports improvements consistent with ours with regard to the convergence

rate of a rialtilevel optical flow algerithm relatinve to a single Tevel aigorithm. He cmployed the

Hom=Schy nek relaxation formulas for his implementaton.

17
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6. Multigrid Methods, Regularization, and Stochastic Relaxation

A primarv purposc of low-level visual processing is to reconstruct relevant physical charac-
teristics of 3-D scenes from their tmages. We have considered in this paper three different visual
rcconstruction problems — the computation of lightness from an image (a 2-D, static reconstruction
problem), shape-from-shading (a 3-D, static problem), and optical flow (a 2-D, dynamic problem).
It was possible to apply muligrid methods because cach of these problems was formulated as a

variational principle or associated partial differential equation.

As inverse mathematical problems, visual reconstruction problems tend to be mathematically
ill-posed, in that existence, uniqueness, and stability of their solutions cannot be guaranteed a
priori [Poggio and Torre, 1984). Among the systematic techniques that have been developed to
tackle ill-posed problems is the method of regularization [Iikhonov and Arsenin, 1977). ‘Through
regularization analysis, ill-posed visual problems can be restated as well-posed variational principles
by restricting the possible solutions with appropriate stabilizing functionals.  In gencral, the
smoothness propertics of stabilizers must be controlled ncar discontinuities [Terzopoulos, 1984b).
T _lingly, the same stabilizer was used to impose the smoothness constraint in both the shape-

from-shading and optical flow problems,

A major attraction of regularization analysis is that it lcads systematically fo variational
principles which pcrmit advantageous use of multigrid relaxation methods. As a visual algorithm
design strategy, regularization analysis applied in conjunction with multigrid methocdslogy promises
10 impact on a broader spectium of visual reconsiruction problems, including image reconstruction
and discontinuity detection [Geman and Geman, 1934), stercopsis [Marr and Poggio, 1977],
registration [Bajesy & Broit, 1982), motion ficld interpolation [Hildreth, 1984), shape-from-contour
[Brady & Yuille, 1983), and structure-from-motion [Uliman, 1979).

An issuc of concern is that the regularization of visual reconstruction problems cannot always
be expected to lead to convex variational principles having a unigue absolute extremum, without
relative extrema. Unfortunately, classical relaxation or gradient descent methods are not directly
apphcable to nonconvex variational principles, since they often get trapped in relative extrema.
Stochastic relaxation algorithms (such as simulated anncaling) do not suffer this disadvantage
[Kirkpawrick ef «l, 1983; Hinton & Scjnowski, 1983]. Nonetheless, since stochastic relaxation
scarches for absolute extrema with processors that are restricted to local interactions, it too suffers
serious incfhciencies in propagating counstraints. The inherently slow convergence rates are further
aggravated by the nondcterministic nature of the local computations.  Multigrid methods may

amcliorate these probiems by facilitating constraint propagation through the use of coarser scales.

7. Conclusion

Many important problems in low-level computer vision can be formulated as variational
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principles or as partial differcntial cquations. A particular source of such formulations is the
regularization analysis of iil-posed visual reconstruction problems. Once discretized, variational and
difterential formulations are amenable to numerical solution by iterative relaxation methods, which
readily map into massively parallel computer architectures. However, distributed local-support
computations arc inherently incflicient at propagating constraints over the large nctwork or grid
representatiens that are ¢ncountered in computer vision applications.

In our previous work on surface reconstruction algorithms, we established that multiresolution
rclaxation techniques can overcome this incfficiency, without sacrificing the local-interconnect nature
o the conputations. This has been corroborated in the present paper by successfully applying
mulugrid methods to the well-known problems of computing lightness, shape-from-shading, and
optical floa from images. The nes 2l maitiresolution algorithms that we designed in the context
of cach of these prublems were shown to be substantially more cfficicnt than the published single

level versions.,

Beyond its effectiveness as a (local) convergence acceleration stratcgy, our adaptation of
muligrid nethodology also leads to iterative algorithms that compute mutually consistent visual
representivions over a range of spatial scales. Multir¢esolution representations appear to be crucial
in mterfacing Jow-level visual processing to subsequent tasks such as recognition, manipulation,

and navigation.
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